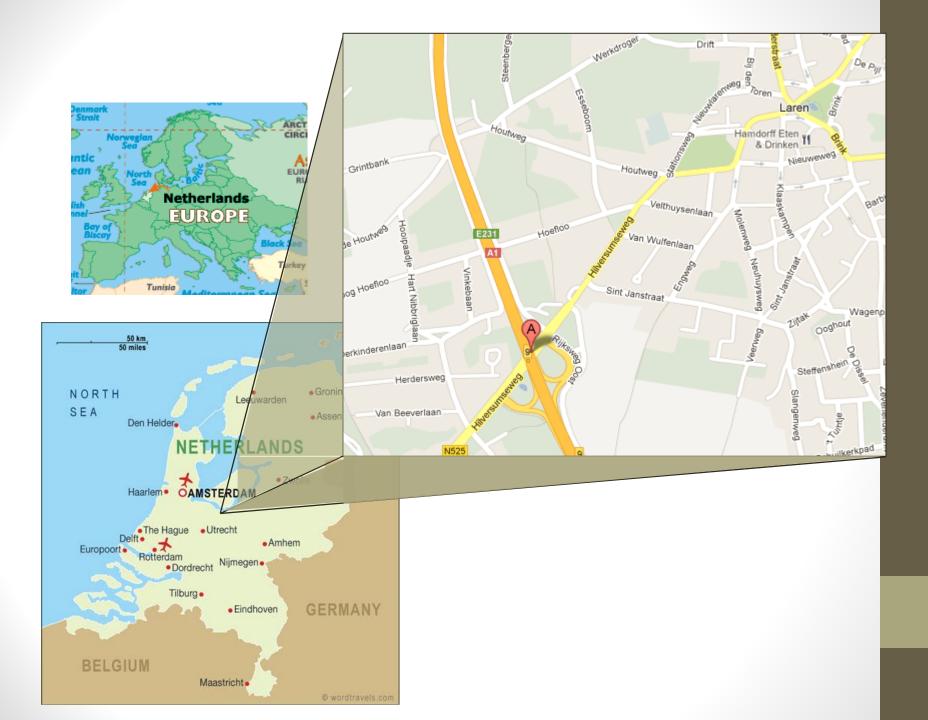
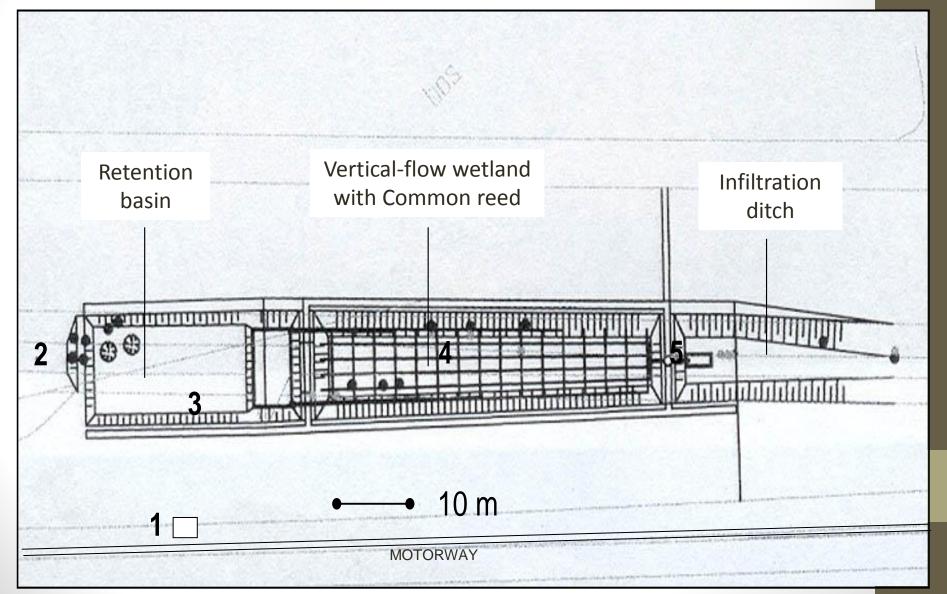
Retention of heavy metals and Poly-Aromatic Hydrocarbons from road water in a constructed wetland and the effect of de-icing

Karin Tromp, <u>Ana T. Lima</u>, Arjan Barendregt and Jos T.A. Verhoeven

Rijkswaterstaat Ministerie van Infrastructuur en Milieu

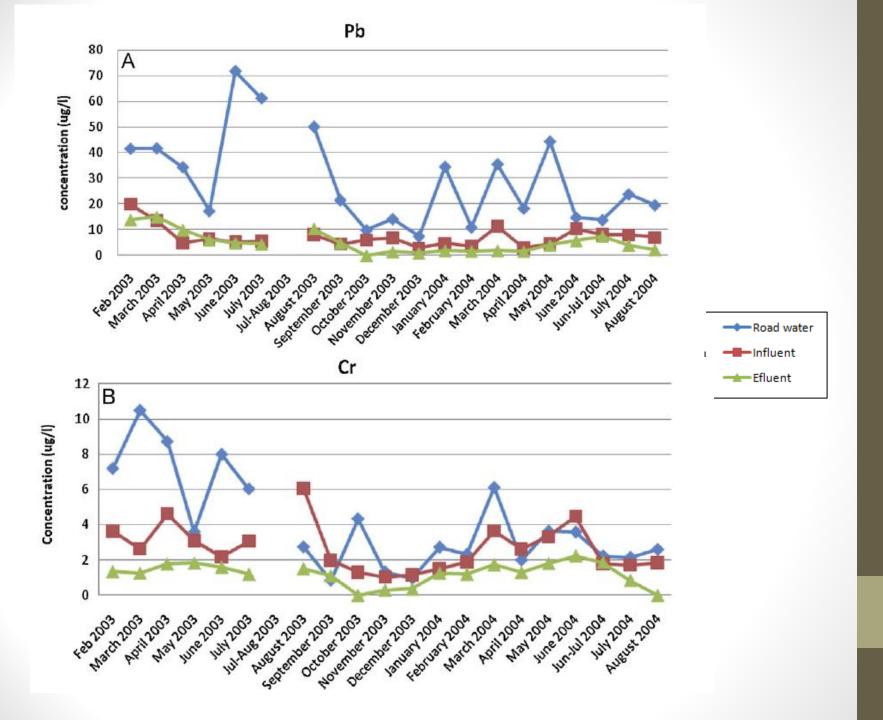


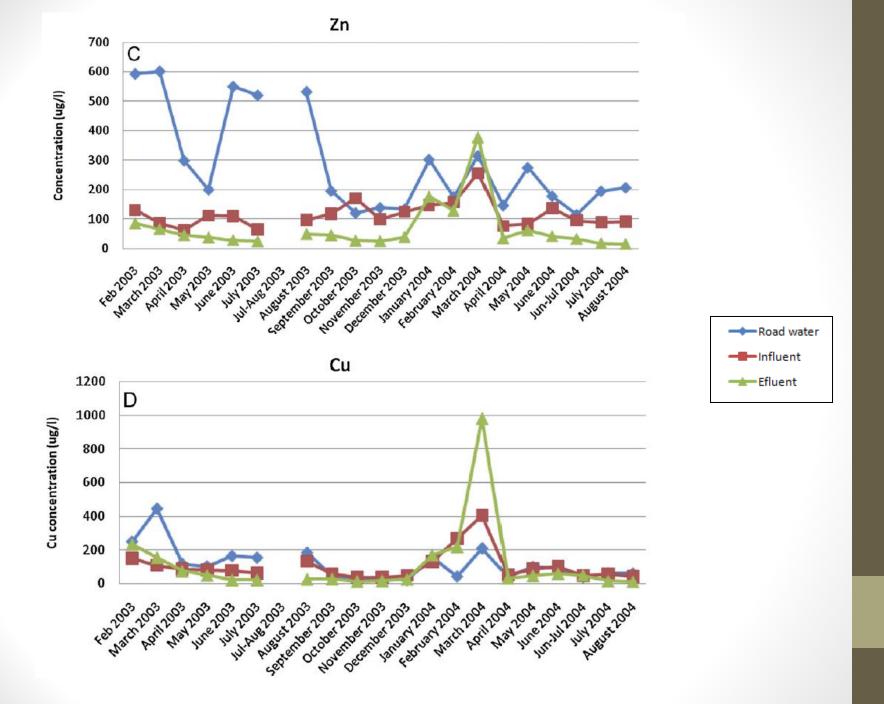
Utrecht Universitei

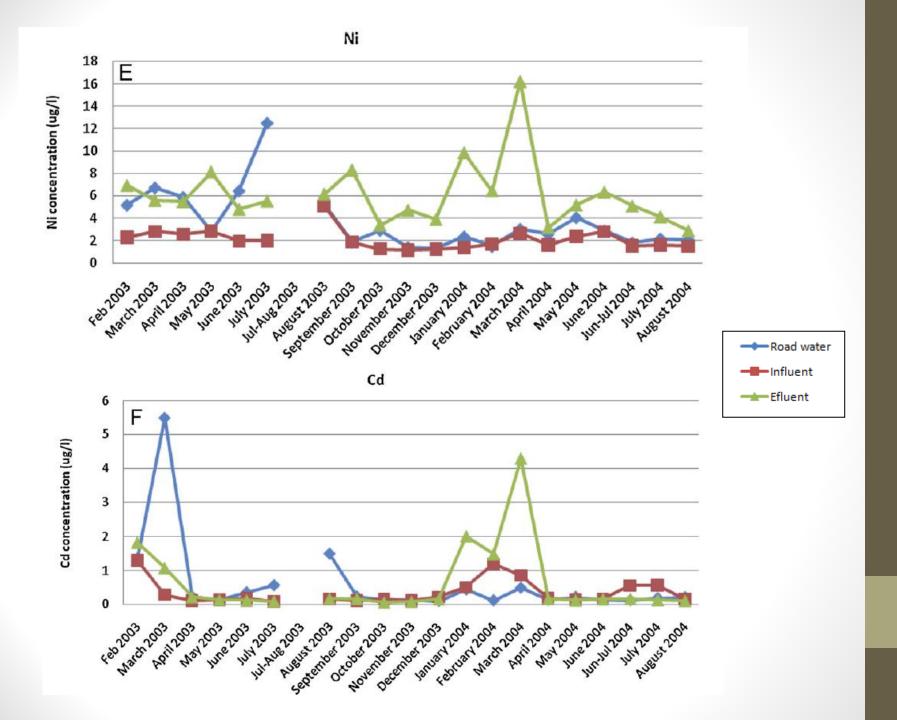


Outline

- Road runoff
 - Polycyclic Aromatic Hydrocarbons (PAHs)
 - Heavy metals
- 1.8 ha of motorway collected water at gully pots
- Constructed wetland to complement runoff contaminant retention
- Monitored PAHs and Heavy metals for 1.5 years
- Major considerations and recommendations

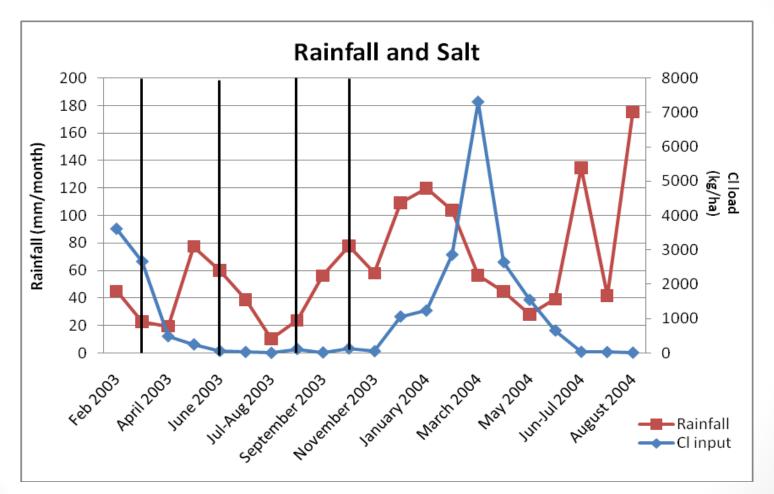

Road water infiltration facility





- (1) What are the reductions in concentrations going from road runoff via the sewer system (gully pots) towards the wetland and finally to the groundwater recharge point?
- (2) What are the effects of road management measures (sweeping, de-icing)?
- (3) What is the 'best practice' for the road and wetland management?

- (1) What are the reductions in concentrations going from road runoff via the sewer system (gully pots) towards the wetland and finally to the groundwater recharge point?
- (2) What are the effects of road management measures (sweeping, de-icing)?
- (3) What is the 'best practice' for the road and wetland management?



- (1) What are the reductions in concentrations going from road runoff via the sewer system (gully pots) towards the wetland and finally to the groundwater recharge point?
- (2) What are the effects of road management measures (sweeping, de-icing)?
- (3) What is the 'best practice' for the road and wetland management?

Main drivers

		Runoff (µg/L)		Influent (µg/L)			Effluent (µg/L)			Dutch Standards	EU Standard	EPA standar
	Min.	Average	Max.	Min.	Average	Max.	Min.	Average	Max.	(µg/L) *	s (μg/L) †	ds (µg/L)‡
Cd	0.1	0.6 ± 1.2	5.5	0.1	0.4 ± 0.4	1.3	0.1	0.6 ± 1.1	4.3	2 0.4	0.08- 0.25	0.25
Cr	0.8	4.1 ± 2.8	10.5	1.0	2.7 ± 1.3	6.1	0	1.2 ± 0.6	2.2	84 1.0	-	74/11
Cu	21.7	117.1 ± 101.8	445	36	103.5 ± 89	405	12.3	113.0 ± 215.4	980	3.8 15	-	1-1000 ¹
Ni	1.3	3.8 ± 2.7	12.5	1.1	2.1 ± 0.9	5.1	2.9	6.1 ± 3	16.2	6.3 15	20	52
Pb	7.4	29.3 ± 18	71.7	2.7	7.1 ± 4.1	19.8	0	5.1 ± 4.3	15.0	220 15	7.2	2.5
Zn	115	289.8 ± 171	602	62	115.3 ± 44	256	15.1	67.8 ± 83	378	40 65	-	120

		Runoff (µg/L)		Influent (µg/L)			Effluent (μg/L)			Dutch	EU	EPA	
										Standards	Standard	standards	
										(µg/L) *	s (µg/L) †	(µg/L)‡	
	Min.	Average	Max.	Min.	Average	Max.	Min.	Average	Max.				
Cd	0.1	0.6 ± 1.2	5.5	0.1	0.4 ± 0.4	1.3	0.1	0.6 ± 1.1	4.3	2 0.4	0.08-0.25	0.25	
Cr	0.8	4.1 ± 2.8	10.5	1.0	2.7 ± 1.3	6.1	0	1.2 ± 0.6	2.2	84 1.0	-	74/11	
Cu	21.7	117.1 ± 101.8	445	36	103.5 ± 89	405	12.3	113.0 ± 215.4	980	3.8 15	-	1-1000 ¹	
Ni	1.3	3.8 ± 2.7	12.5	1.1	2.1 ± 0.9	5.1	2.9	6.1 ± 3	16.2	6.3 15	20	52	
Pb	7.4	29.3 ± 18	71.7	2.7	7.1 ± 4.1	19.8	0	5.1 ± 4.3	15.0	220 15	7.2	2.5	
Zn	115	289.8 ± 171	602	62	115.3 ± 44	256	15.1	67.8 ± 83	378	40 65	-	120	

Max. – referring to the periods of de-icing

Heavy metal retention efficiencies

	ŀ	leavy meta	als remova	l % in sewer sy	/stem	
	Cd	Cr	Cu	Ni	Pb	Zn
Total	40	39	13	48	76	60
Particulate	57	79	77	85	85	81
Dissolved	32	-33	-15	11	-14	34

		Heavy met	als remova	al % in the wet	land	
	Cd	Cr	Cu	Ni	Pb	Zn
Total	-74	51	-11	-213	28	42
Particulate	30	34	47	-13	67	84
Dissolved	-105	49	-15	-337	-37	24

PAHs overview

	Runoff (µg/L)			Influent (μg/L)				Effluent (µg/L)		Dutch	EU	ΕΡΑ
	Min.	Average	Max.	Min.	Average	Max.	Min.	Average	Max.	Standards (µg/L) *	Standards (µg/L) †	standards (μg/L)‡
Anthracene	0.004	0.021 ± 0.02	0.08	0	0.003 ± 0.002	0.009	0	0.0009 ± 0.0013	0.004	0.08 0.0007	0.1	40000
Phenanthrene	0	0.20 ± 0.22	0.77	0	0.08 ± 0.12	0.39	0	0.02 ± 0.06	0.24	0.3 0.003	-	-
Fluoranthene	0	0.78 ± 0.95	3.65	0	0.06 ± 0.07	0.24	0	0.004 ± 0.012	0.05	0.5 0.003	-	140
Benzo(a)anthra cene	0.04	0.19 ± 0.2	0.89	0	0.02 ± 0.02	0.07	0	0.0013 ± 0.0014	0.0034	0.03 0.0001	-	0.018
Chrysene	0.09	0.44 ± 0.51	2.17	0	0.05 ± 0.04	0.16	0	0.006 ± 0.010	0.039	0.9 0.003	-	0.018
Benzo(k)fluora nthene	0.03	0.12 ± 0.12	0.46	0.004	0.02 ± 0.01	0.05	0	0.0017 ± 0.0015	0.006	0.2 0.0004	0.003	0.018
Benzo(a)pyrene	0.06	0.25 ± 0.23	0.84	0.009	0.03 ± 0.02	0.11	0	0.0018 ± 0.0024	0.01	0.2 0.0005	0.05	0.018
Benzo(g,h,i)per ylene	0.09	0.36 ± 0.34	1.27	0.01	0.06 ± 0.05	0.19	0	0.008 ± 0.009	0.03	0.5 0.0004	0.002	-

PAH retention efficiencies

	PAH removal % in sewer system											
Phen	Anth	Fla	Pyr	B(a)A	Chry	B(b)F	B(k)F	B(a)P	DIB(a,h)A	B(g,h,I)P	Sum	
60	86	92	87	89	89	87	85	88	82	84	86	

	PAH removal % in the wetland											
Phen	Anth	Fla	Pyr	B(a)A	Chry	B(b)F	B(k)F	B(a)P	DIB(a,h)A	B(g,h,I)P	Sum	
69	70	94	91	94	88	93	91	94	93	87	87	

Road management results

- The engineered system along the motorway of the sewer system (+ gully pots) and the remediation wetland facility retained PAHs and heavy metals
- Salts added to the road for de-icing increased heavy metal release from:
 - The sewer system
 - Wetland
- Although most metal concentrations were below the standards post treatment, Cu, Zn, Cd and Ni showed a dramatic increase during salt de-icing
- High release of Cu (65 higher than the standard)

Road management results

- The facility retained the PAHs very well, with retention efficiencies of 90–95%
- Environmental standards for water quality were never surpassed after the wetland filtering for PAHs

- (1) What are the reductions in concentrations going from road runoff via the sewer system (gully pots) towards the wetland and finally to the groundwater recharge point?
- (2) What are the effects of road management measures (sweeping, de-icing)?
- (3) What is the 'best practice' for the road and wetland management?

Management recommendations

- Modify the hydraulic management of the system to let the road water bypass it during de-icing
- PAHs and metals were well retained by the system during the rest of the year and reduce point source emissions
- Sediment and root mat of the wetland facility will have to be treated as hazardous waste at the end of its life time of 25 years.

Contents lists available at SciVerse ScienceDirect

Journal of Hazardous Materials

erial

journal homepage: www.elsevier.com/locate/jhazmat

Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing

Karin Tromp^{a,1}, Ana T. Lima^b, Arjan Barendregt^c, Jos T.A. Verhoeven^{a,*}

^a Ecology and Biodiversity, Department of Biology, Utrecht University, Padualaan 8, 3584 CA Utrecht, The Netherlands

^b Geochemistry, Dept. of Earth Science, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands

^c Interfacultary Institute for Risk Assessment Science, Toxicology Division, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands

Thank you for your attention

Questions?

Ana Teresa Lima – lima.at@gmail.com Jos Verhoeven – j.t.a.verhoeven@uu.nl